Search results

Search for "Kelvin probe force microscopy (KFM)" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Measurement of electrostatic tip–sample interactions by time-domain Kelvin probe force microscopy

  • Christian Ritz,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2020, 11, 911–921, doi:10.3762/bjnano.11.76

Graphical Abstract
  • Kalman filter; Kelvin probe force microscopy (KFM); time domain; Introduction Electrostatic forces are important interactions in non-contact atomic force microscopy (NC-AFM). They arise from differences in the work function of the tip and the sample, from trapped charges, or from potentials applied to
  • active nanoelectronic devices. Kelvin probe force microscopy (KFM) is a technique used to quantitatively characterize such electrical properties [1][2][3]. It is applied to map material compositions via changes in the work function, to localize charge distributions in dielectric samples [4][5], and to
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • . Keywords: contact resistance; Kelvin probe force microscopy (KFM); nanowire; scanning thermal microscopy (SThM); self-heating; Introduction Electronic and thermal properties of nanoscale devices are innately coupled. The charge carriers in most conductors release energy by scattering at defects or phonons
  • interpretation. Here, we demonstrate high-resolution measurements of an operating indium arsenide (InAs) nanowire (NW) by scanning thermal microscopy (SThM) and Kelvin probe force microscopy (KFM), and how the information obtained by both methods can be combined to extract quantitative thermal and electronic
  • fields are reconstructed from the detected Udc and Uac raw voltage signals [21]. Kelvin probe force microscopy KFM measurements are performed in air using a commercial AFM (Cypher, Asylum Research) and an external lock-in amplifier (HF2, Zurich Instruments). Topography is acquired with net-attractive
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Kelvin probe force microscopy for local characterisation of active nanoelectronic devices

  • Tino Wagner,
  • Hannes Beyer,
  • Patrick Reissner,
  • Philipp Mensch,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2015, 6, 2193–2206, doi:10.3762/bjnano.6.225

Graphical Abstract
  • nanometres only in the active channel or at electrode interfaces. Methods for local electronic characterisation, providing accurate measurements with nanometre spatial resolution, are in very high demand, but have been lagging behind the technological requirements. Kelvin probe force microscopy (KFM) is an
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2015
Other Beilstein-Institut Open Science Activities